
1

SafeG Dual-OS Communications Manual v.4.0

Daniel Sangorŕın, Shinya Honda, Hiroaki Takada

SafeG dual-OS communications allow a real-time operating system (RTOS) and a general-purpose operating

system (GPOS)—sharing the same processor through virtualization—to collaborate in complex distributed

applications. In this manual, we explain the SafeG dual-OS communications approach which is able to

accomplish efficient communications without compromising the reliability of the RTOS.

1 Communications architecture

Here we describe the SafeG dual-OS communica-

tions (hereafter dualoscom) architecture.

1. 1 Reliability properties

• Memory isolation: the dualoscom architec-

ture relies on user-level shared memory for im-

plementing dual-OS communications efficiently

(see Fig. 1). In contrast to traditional ap-

proaches, dualoscom control data structures

are not protected by the VL. Instead, we divide

GPOS tasks into two groups: GPOS commu-

nicating tasks with the privilege of accessing

the shared memory region; and other GPOS

tasks without such privilege. GPOS com-

municating tasks are created and thoroughly

tested by the dual-OS system engineer dur-

ing the development phase. In contrast, the

other GPOS tasks may include malicious or

buggy applications installed by the user dur-

ing the lifetime of the system, and are ex-

pected to be less trustworthy. This reason-

ing leads to the existence of three trustworthi-

ness levels (trusted, untrusted-privileged and

untrusted-unprivileged), which are separated

by the two protection sandboxes illustrated

by Fig. 1. TCB memory is protected against

any GPOS access by the VL protection level;

and communications shared memory is pro-

tected against untrustworthy GPOS tasks by

the permissions-based protection level.

• Shared control data: if the permissions-

based protection level is broken (e.g., by

exploiting a GPOS kernel bug), untrusted-

unprivileged GPOS tasks can attack the sec-

ond virtualization-based protection level by

maliciously modifying the shared control data.

In order to protect the RTOS against such

modifications—for example, to avoid derefer-

encing a null pointer—all updates by the RTOS

to the shared control data are made in four

steps: copy the required control data to the

RTOS memory; validate it by range-checking;

update it according to the current operation

(e.g., enqueue); and finally, copy the modified

control data back to shared memory. Validat-

ing the raw contents of user messages is out of

the scope of this architecture.

• Real-Time: another way for a malicious GPOS

application to attempt breaking the second

protection level is by sending an excessive

amount of messages to the RTOS. The du-

aloscom architecture splits the transmission

of messages in two parts: the data path

and the events path. The data path in-

volves non-blocking operations to enqueue or

dequeue blocks of data; and is implemented

through lock-free bidirectional FIFOs that ex-

ist in shared memory (see Fig. 2). The events

path involves asynchronous notifications (im-

plemented through inter-OS interrupts) and

wait-event operations that may block the call-



2 Dual-OS Communications Manual

Virtualization-based
2nd protection level

Virtualization layer

RTOS kernel

RTOS
task

GPOS kernel

comm.

lib
other
tasks

Events path (inter-OS interrupts)

Shared 
Memory

control 
data copy

RTOS Devices

interrupt limiting

comm. lib

control data

RTOS

driver

GPOS
comm.

task

GPOS

GPOS Devices

Trusted

Untrusted-unprivileged

Access

Sandbox

Permissions-based
1st protection level

Interaction

data path

Untrusted-privileged

Fig. 1: The proposed dual-OS communications architecture.

Fig. 2: Elements of a dualoscom communication channel.

ing task until a timeout expires. This separa-

tion allows tasks to communicate using both

polling or event-driven communication pat-

terns. However, in order to protect the time-

liness of RTOS activities the rate of GPOS

⇒ RTOS message interrupts must be limited.

The dualoscom architecture supports two mes-

sage interrupt limiters: the strict message in-

terrupt limiter which enforces the minimum

inter-arrival time between interrupts; and the

bursty message interrupt rate limiter which en-

forces a maximum burst size and a maximum

arrival rate. Finally, it is the responsibility of

RTOS applications not to poll for new GPOS

messages in an endless loop.

• Memory faults: to guarantee that the RTOS

will never try to access non-existent or un-

mapped memory, the shared memory region

used for communications is statically allocated

at configuration time.

• Unbounded blocking : to avoid a situation in

which RTOS tasks could wait for a GPOS mes-

sage for an unbounded amount of time, a time-

out can be specified in all blocking operations

of the events path. Non-blocking operations

never perform retries, and return an error code

instead when there is contention.

• Code modifications: to avoid modifying the

RTOS kernel or the VL, the data path is car-

ried out by the dualoscom communications li-

brary (comm. lib) at user level. The events

path and the message interrupt rate limit-

ing mechanisms are implemented through the

RTOS application interface (API). In contrast,

to implement event operations (e.g., waiting or

sending an event), the GPOS kernel requires

being extended with a communications driver.

1. 2 Efficiency properties

• Throughput : to minimize the overhead caused

by unnecessary data copies and context

switches, all data path communications occur

at user level through shared memory. To re-

duce the overhead caused by the events path,

applications can choose to use a single event

to notify the transmission of several messages,

thus reducing the number of context switches

per message. This is supported by splitting the

communications interface between the trans-

mission of data and events. There are two



3

more mechanisms for reducing the overhead

caused by unnecessary context switches: fil-

ters and non-synchronized accesses. Filters

are functions that execute on the sender side

of a channel (see Fig. 2 and Fig. 3) and are

used for discarding the transmission of mes-

sages when they are not needed by the receiver

(e.g., if a variable has not changed since the

last time it was received). The access to a

channel can be configured to be synchronized

(e.g., through a mutex supporting the priority

ceiling or the priority inheritance algorithm)

or non-synchronized. This allows avoiding the

execution time overhead associated to access

synchronization when only a single task is sup-

posed to access the channel.

• Memory size: to minimize the amount of

memory used by dual-OS communications, all

channel parameters can be configured. The

configuration parameters of a channel include:

the number of blocks and their size; the use

of synchronized accesses; and its associated fil-

ters.

• Interface: the run time interface to the du-

aloscom architecture supports shared memory

blocks and asynchronous event notifications.

By combining them it is possible to build

more complex communication patterns such as

RPCs or unqueued messages.

1. 3 Communication channels

A channel is a communication entity by means of

which RTOS and GPOS untrusted-privileged tasks

can exchange information. Fig. 2 depicts the main

structures of a communication channel, which is

composed of the following elements:

• Blocks: a block is a piece of shared memory

used to send data. Each channel contains a

pool of a configurable number of blocks. All

the blocks in a channel have a fixed size, which

is also configurable. Blocks must be explicitly

allocated before being used. They can be sent

in both directions (i.e., RTOS ⇔ GPOS) and

they can be released back to the channel’s pool

either by the sender or the receiver.

• FIFOs: a FIFO (First-In-First-Out) queue is

a data structure used to deliver blocks in the

same order they were enqueued. Each channel

contains exactly two FIFOs, one for each com-

munication direction. A FIFO has a number of

elements equal to the number of blocks in the

channel. Each enqueued element consists of a

block identifier that was previously allocated

and enqueued by a sender. A FIFO queue can

be easily implemented using a lock-free algo-

rithm if all of its operations are serialized. For

that reason, the GPOS does not need to dis-

able RTOS interrupts (e.g., for synchronization

purposes) which is forbidden by the VL.

• Filters: a filter is a function that receives a

block’s buffer and size, and returns a boolean

to indicate whether the corresponding block

should be sent or not. Filters are used for dis-

carding the transmission of a block (i.e., be-

fore it is enqueued) depending on its contents.

They are used to avoid unnecessary commu-

nication overhead. For example, in Fig. 4 a

filter function (tmp_update) is used to discard

the transmission of heater temperature values

that do not represent updates of previous val-

ues. Fig. 3 depicts the dualoscom filtering func-

tionality. Each channel contains two active fil-

ter functions (e.g., rtfilter2 and gpfilter0),

one for each communication direction. Filters

used in the RTOS ⇒ GPOS communication di-

rection (e.g., rtfilter#) execute on the RTOS,

and therefore must follow the same formal ver-

ification process as other components in the

TCB (e.g., they must assume that blocks can

be maliciously modified by the GPOS). In con-

trast, GPOS ⇒ RTOS filters (e.g., gpfilter#)

execute on the GPOS untrusted-privileged user

space. Compared to untrusted-unprivileged

software, GPOS filters must follow a software

quality control. However, they are allowed to

assume that data sent by the RTOS is valid.

The source code of RTOS and GPOS filters is

statically provided by the dual-OS system engi-

neer during the build process (see Fig. 4), and

their contents cannot be modified during the

execution of the system. Instead, each chan-

nel contains two variables (RTOS and GPOS

active filter id), which are identifier numbers

for indicating the currently active filter on each

communication direction (e.g., 2 in Fig. 3a and

0 in Fig. 3b). While filter functions are lo-

cated in the same memory region as the op-

erating system where they execute, active fil-



4 Dual-OS Communications Manual

(a) RTOS ⇒ GPOS communication direction (b) GPOS ⇒ RTOS communication direction

Fig. 3: Behavior of the filtering functionality in both communication directions.

ter id variables are located in shared memory.

Receiver tasks can select the active filter at

run time by using a filter identifier—or a null

value if no filtering is required—as illustrated

by Fig. 3. Filter identifiers are automatically

allocated by the dualoscom configurator tool

during the configuration phase (see Fig. 4), and

are internally represented as natural integers.

Before a block is enqueued to a channel, the du-

aloscom library reads its active filter id number

from shared memory, and executes the associ-

ated active filter function (e.g., rtfilter2 and

gpfilter0) on it. If the filter function returns

true, the block is enqueued to the FIFO; other-

wise an error code is returned to the user, indi-

cating that the block was discarded. Note that

in Fig. 3a, a malicious GPOS task can poten-

tially corrupt the active filter id with an out-

of-range value (e.g., 47). For that reason, the

RTOS library must always validate the range

of the active filter id variable before using it to

select a filter function for execution.

• Events: an event is a method for sending asyn-

chronous notifications between the RTOS and

the GPOS. Events can be sent in both direc-

tions and they are not queued, meaning that

they must be acknowledged by the receiver

before a new event can be sent. Events are

sent independently to the process of enqueue-

ing blocks. This allows senders to enqueue sev-

eral blocks before notifying the receivers.

• Mutexes: a mutex is a mechanism used for se-

rializing the access of tasks to a channel within

the same OS. Channels can have up to two

mutexes, one for each communication direc-

tion. Each mutex can be removed at configura-

tion time—for minimizing the synchronization

overhead—if access contention is not expected.

1. 4 Dualoscom interface

1. 4. 1 The dualoscom build process

Fig. 4 illustrates the dualoscom build process

through the heating devices example. As it is

common practice in most RTOSs, dualoscom pro-

vides a configuration interface which allows all of

its structures to be allocated statically. This is

necessary for guaranteeing the reliability of the

TCB and it allows minimizing its memory and ex-

ecution time overhead. First, the dual-OS sys-

tem engineer provides a configuration file (e.g.,

dualoscom_config.txt) containing a channel dec-

laration for each heating device. Its syntax is

detailed in Section 1. 4. 2. Then, the configura-

tion file is parsed by the dualoscom configura-

tor tool, which generates a configured header file

(e.g., dualoscom_config.h) with constant defini-

tions (e.g., identifiers); and an RTOS configuration

file (e.g., rtos.cfg) with static declarations. Nor-

mally RTOS resources (e.g., semaphores) are allo-

cated statically for reliability reasons. Next, the

dual-OS system engineer provides the RTOS and

GPOS communicating applications, and the filter

functions if necessary. Applications use the run

time interface in Section 1. 4. 3 for communicating.

The build process ends with the generation of

two binaries: the RTOS bare-metal binary (e.g.,

asp.bin), which contains the RTOS kernel, du-

aloscom library and application (the RTOS ker-

nel is typically linked to the user application for

performance reasons); and the GPOS user appli-

cation (e.g., user.elf) which is linked to the du-

aloscom library. The GPOS kernel is patched with

a dualoscom driver, which receives all configura-

tion parameters from user-space at initialization,

and therefore it only needs to be built once.

1. 4. 2 Configuration interface

The configuration interface uses the next syntax:



5

Fig. 4: The dualoscom build process.

DUALOSCOM_FILTER(): used to declare a filter. It

accepts the following parameters:

• FILTER_NAME: a name for the filter. The du-

aloscom configurator generates a constant with

the same name (e.g., TMP_FILTER) which is

used as an identifier for the receiving tasks to

select the active filter at run time.

• filter: the name of a function which takes a

block’s buffer and size as input parameters, and

returns a boolean value (see the tmp_update

function in Fig. 4 for an example). If the re-

turn value is true, the block will be enqueued;

otherwise it will be discarded. The body of the

function is written and tested (i.e., it must fol-

low the same software quality controls as any

other software executed in the same trustwor-

thiness level) by the dual-OS system engineer

before the build process (see Fig. 4) begins.

DUALOSCOM_CHANNEL(): used to declare a channel.

It accepts the following parameters:

• CHANNEL_NAME: a name for the channel. After

configuration, the same name (e.g., CH_A) can

be used to identify the channel.

• num_blocks: the number of blocks.

• block_size: the block size in memory words.

• mutexes: two booleans to indicate if mutual

exclusion is used at each communication end.

• rtos_filters: list of FILTER_NAME values to

declare which filters can be selected on the

RTOS end of this channel. The value NULL can

be used to declare no filter. By default, there

is no active filter at initialization.

• gpos_filters: list of FILTER_NAME values to

declare which filters can be selected on the

GPOS end of this channel. The value NULL

can be used to declare no filter. By default,

there is no active filter at initialization.

DUALOSCOM_CHANNELS_GROUP(): used to declare a

group of channels, to allow waiting for events on

several channels at the same time.

• GROUP_NAME: a name for the group of channels.

After configuration, the same name can be used

to identify the group.

• channels: a list of CHANNEL_NAME values that



6 Dual-OS Communications Manual

must match the values used during the decla-

ration of channels.

1. 4. 3 Run time interface

The run time interface is a set of functions for

the RTOS and GPOS applications to communicate

between each other at run time. All functions re-

turn DUALOSCOM_SUCCESS upon success and one of

the following errors upon failure:

1. DUALOSCOM_NOPERM: not enough permissions.

2. DUALOSCOM_NOINIT: the communications sys-

tem is not initialized yet.

3. DUALOSCOM_PARAM: incorrect parameter.

4. DUALOSCOM_FULL: there are no free blocks.

5. DUALOSCOM_ENQ: the block is enqueued.

6. DUALOSCOM_FILTER: the block was discarded

7. DUALOSCOM_EMPTY: no block is enqueued.

8. DUALOSCOM_ALLOC: the block is not allocated.

9. DUALOSCOM_TIMEOUT: a timeout occurred.

The run time interface is composed of the following

list of functions. Note that the prefix dualoscom_

has been omitted from each function for the sake

of shortness.

Initialization functions

• init(timeout): initializes the dualoscom sys-

tem. The initialization protocol and the time-

out units are implementation-dependent. May

return errors 1, 3, and 9.

Block management functions

• block_alloc(chan_id, &block_id): it allo-

cates a block from a channel’s pool. This func-

tion never blocks the calling task. May return

errors 1, 2, 3, and 4.

• block_free(chan_id, block_id): releases a

block back to the channel’s pool where it be-

longs. May return errors 1, 2, 3, and 8.

• block_getbuffer(chan_id, block_id, &buffer_p): to

obtain a pointer to the beginning of the mem-

ory region of a block. May return errors 1, 2,

3, and 8.

• block_enqueue(chan_id, block_id): enqueues

a block to a channel’s FIFO. May return errors

1, 2, 3, 6, and 8.

• block_dequeue(chan_id, &block_id): dequeues

a block from a channel’s FIFO. This function

never blocks the calling task. May return er-

rors 1, 2, 3, 7, and 8.

Event management functions

• event_send(channel_id): sends a channel

event notification. If a notification had al-

ready been sent but not acknowledged by the

receiver, it returns DUALOSCOM_SUCCESS. Oth-

erwise it may return errors 1, 2, and 3.

• event_wait(chan_id, timeout): this func-

tion makes the calling task wait for an event

notification on a channel. If an event was

pending, the function acknowledges it and re-

turns immediately. Otherwise, the calling task

is put in waiting state until an event arrives

or a timeout occurs. The timeout units are

implementation-dependent. May return errors

1, 2, 3, and 9.

• event_select(group_id, &chan_id,

timeout): this function makes the calling task

wait for an event notification on a specific

group of channels at the same time. If an event

on one of the channels was pending, the func-

tion acknowledges it and returns immediately.

Otherwise, the calling task is put in waiting

state until an event arrives or a timeout oc-

curs. The timeout units are implementation-

dependent. May return errors 1, 2, 3, and 9.

Filter management functions

• filter_set(chan_id, filter_id): used by

receiver tasks to select one of the filter func-

tions available at the sending side of a channel

through a filter identifier. The filter identifier

can be NULL_FILTER if no filtering is desired.

May return errors 1, 2, and 3.

1. 5 Middleware

This section describes an example implementa-

tion of remote procedure calls (RPCs) and unqueued

messages using the dualoscom interface.

1. 5. 1 RPC communication

Dual-OS RPC communications allow an RTOS

client to request the execution of a subroutine by

a GPOS server (or vice versa) in the same man-

ner as if the subroutine was local. Fig. 5 outlines

the pseudocode of a simple algorithm—error check-

ing is not shown—for accomplishing RPC com-

munications on top of the basic dualoscom inter-

face. RPCs are internally implemented through

client request messages sent over dualoscom chan-



7

Fig. 5: Pseudocode of RPC communication.

(a) Unqueued/sampling messages on top of the dualoscom interface

(b) Configuration of unqueued/sampling mesages

Fig. 6: Support for unqueued/sampling messages on top of the dualoscom interface.

nels (e.g., RPC_ADD). Each request message contains

the input parameters (e.g., a and b) for the sub-

routine, and memory space for the RPC server to

store the output parameters (e.g., result). If the

RPC is synchronous, the client is put into wait-

ing state while the server processes the request

message. From the client point of view, the fact

that the subroutine (e.g., add) executes remotely is

completely transparent. The only difference com-

pared to a local subroutine is the fact that the

RPC must be declared on a configuration file (e.g.,

rpc_config.txt) through the following syntax:

DUALOSCOM_RPC(): used to declare an RPC.

• function: the name of the function.

• direction: indicates the communication di-

rection (RPCs are unidirectional).

• mutex: indicates if mutual exclusion is required

at the client end.

• params: a list of parameters with the next for-

mat: param : [in] [out] type.

The RPC configuration file is parsed by the RPC

configurator tool, which generates a dualoscom con-

figuration file (e.g., dualoscom_config.txt) and

the necessary stub functions on each OS that must

also be linked into the final binaries.



8 Dual-OS Communications Manual

1. 5. 2 Unqueued/Sampling messages

Unqueued messages—also known as sampling

messages—are a useful method for the RTOS tasks

to share data samples in a loosely-coupled fashion

with the GPOS tasks. A data sample consists of

a typically small region of memory containing a

value that is updated periodically by a producer

task. This value is read periodically by a loosely-

coupled set of consumer tasks. Unqueued mes-

sages are useful for situations in which only the

last value of some data (e.g., sensor data) is rele-

vant to the application. Fig. 6a illustrates a sim-

ple way to implement unqueued messages on top of

the dualoscom architecture. The example consists

of two data samples sent in the RTOS ⇒ GPOS

communication direction. Data samples (e.g., S1

and S2) are declared in a configuration file (e.g.,

samp_config.txt) using the following syntax:

DUALOSCOM_SAMPLE(): used to declare a data sam-

ple. The parameters are:

• SAMPLE_NAME: the name of the data sample.

After configuration, the same name can be used

to identify the data sample.

• mx_size: the maximum size of the sample.

• direction: indicates the communication di-

rection (e.g., RTOS ⇒ GPOS).

• mutex: indicates if mutual exclusion is required

to allow having multiple producers for the same

data sample.

• filter: default filter.

• init: data sample initialization function.

The samples configuration file is parsed by the

samples configurator tool (see Fig. 6b). This tool

generates a sampling header (e.g., samp_config.h)

that contains the definition of several constants

(e.g., the sample identifiers); and the dualoscom

configuration file (e.g., dualoscom_config.txt),

which contains a channel declaration per data sam-

ple (e.g., SAMP_S1 and SAMP_S2) and a group.

RTOS producer tasks periodically send new sample

values through these channels. On the GPOS side,

there is a sampling library that contains a sam-

ples manager agent. When a new sample value ar-

rives, the samples manager updates the correspond-

ing data sample in local memory (e.g., S1 and S2

in Fig. 6a). The access to these local data samples

is protected through a readers-writer lock.


